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ABSTRACT

Face detection in images is very important for many multimedia
applications. Haar-like wavelet features have become dominant in
face detection because of their tremendous success since Viola and
Jones [1] proposed their AdaBoost based detection system. While
Haar features’ simplicity makes rapid computation possible, its dis-
criminative power is limited. As a consequence, a large training
dataset is required to train a classifier. This may hamper its appli-
cation in scenarios that a large labeled dataset is difficult to obtain.
In this work, we address the problem of learning to detect faces from
a small set of training examples. In particular, we propose to use co-
variance features. Also for better classification performance, linear
hyperplane classifier based on Fisher discriminant analysis (FDA)
is proffered. Compared with the decision stump, FDA is more dis-
criminative and therefore fewer weak learners are needed. We show
that the detection rate can be significantly improved with covariance
features on a small dataset (a few hundred positive examples), com-
pared to Haar features used in current most face detection systems.

Index Terms— Face detection, AdaBoost, object recognition

1. INTRODUCTION

Face detection (or more generic object detection) plays a critically
important role in many computer vision applications such as intel-
ligent video surveillance, vision based teleconference systems and
content based image retrieval. It is challenging because of the vari-
ations of visual appearances, poses and illumination conditions etc.
Since Viola and Jones proposed the real-time AdaBoost based face
detector [1], a lot of incremental work has been conducted. Most of
them have focused on improving the boosting method or accelerating
the training process. For example, [2] proposed an improved Float-
Boost method for better detection accuracy by introducing a back-
ward feature selection step into the AdaBoost training procedure.
[3] used forward feature selection for fast training. [4] significantly
reduced decision stump’s training time by approximation.
Comparatively less work has been done for finding better dis-
criminative features. While Haar features’ simplicity and the idea
of integral image make rapid computation possible, Haar feature’s
discriminative power is limited. As a consequence, a large training
dataset is usually required to train a classifier for reasonable detec-
tion accuracy. In many cases it is tedious to manually label thousands
of images. With the size of the training data increasing, the compu-
tation complexity also goes up quickly. For a supervised learning
algorithm, it consists two components: the feature and the classi-
fication algorithm. We try to address both issues in the context of
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Fig. 1: The first and second covariance region selected by AdaBoost. The
figure displays the first two covariance features overlayed on human faces.
The first covariance feature captures the information of the right eye while the
second covariance feature describes the contour of the face, and the region
around the nose.

face detection. In this work, we show that on small training datasets,
using better features (here in particular, covariance features [5]) and
more flexible weak classifiers, much better detection results can be
achieved compared with Haar features with simple decision stump.

Related work. Literature on face detection is abundant. We list
a few that is relevant to our work here. Yang et al. [6] have provided
a comprehensive survey of the field. Many face detection systems
have been advocated. In [7], a neural network was trained for fast
face detection. Romdhani et al. [8] proposed a cascaded support vec-
tor machine (SVM) structure to reduce the detection time. The work
by Viola and Jones [1] is a break-through. They used very simple
Haar features. Together with the idea of integral image, these fea-
tures can be computed in constant time. AdaBoost was then used
to select features and at the same time to build a strong classifier.
Considering the problem’s extreme imbalance nature, a cascade was
proposed in order to avoid the flood of non-faces. All these sys-
tems have used several thousand face images and even more nega-
tive samples for training. Recently other features such as histogram
of orientations (HOG) [9, 10] and covariance feature [11] have been
proposed for pedestrian detection and better performance is achieved
than Haar features [12]. In this work, we show that covariance fea-
ture is also powerful for face detection.

2. ALGORITHM

Our detection framework follows Viola and Jone’s classical work
[1]. The differences are: (1) we use covariance feature; (2) Since
covariance feature is multidimensional, simple decision stump is no
longer applicable. We adopt the weighted FDA as weak classifiers.
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Fig. 2: AdaBoost learning with decision stump (top) and FDA (bottom) as
weak classifiers on the banana dataset used in [13]. It is clearly shown that
boosting FDA is much better than boosting multidimensional stump in both
training and testing performance.

Covariance features. Tuzel ef al. [5] have proposed region co-
variance in the context of object detection. Instead of using joint his-
tograms of the image statistics (b% dimensions where d is the num-
ber of image statistics and b is the number of histogram bins used for
each image statistics), covariance is computed from several image
statistics inside a region of interest. This results in a much smaller
dimensionality. The correlation coefficient of two random variables
X and Y is given by

_cov(X,Y)  cov(X,Y)
pxyY = var(X)var(Y) ~  og0y M
cov(X,Y)=E[(X — ux)(Y — uy)]
= K )i py), @)

k

where cov(+, ) is the covariance of two random variables; y is the
sample mean and o is the sample variance. Correlation coefficient
is commonly used to describe the information we gain about one
random variable by observing another random variable.

In this work, the 7D image statistics used in this experiment are
pixel location z, pixel location y, image intensity I(z,y), first or-
der partial derivative of the intensity in horizontal and vertical di-
rection, |I| and |I|, second order partial derivative of the intensity
in horizontal and vertical direction |I,;| and |I,,|. The covariance
descriptor of a region is a 7 X 7 matrix. Due to the symmetry, only
upper triangular part is stacked as a vector and used as covariance
descriptors. A vector of covariance descriptors is projected onto a
1D space using weighted FDA algorithm. AdaBoost [14] is then
applied to select the best rectangular region w.r.t. the weak learner
that best classifies training samples with minimal classification error.
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The best weak learner is added to a cascade. Weak learners are added
until the predefined classification accuracy is met. The descriptors
encode information of the correlations of the defined features inside
the region. The experimental results show that the covariance region
selected by AdaBoost are physically meaningful and can be easily
interpreted as shown in Figure 1. The first selected feature focuses
on the human right eye while the second selected feature focuses on
the contour of the face and nose. This finding is consistent with other
researchers’ results. For example, in [15] it was found that the SIFT
[16] word being most probable for faces is the region around eye.

Note that the technique is different from [5], where the covari-
ance matrix is directly used as the feature and the distance between
features is calculated on the Riemannian manifold'. However, eigen-
decomposition is involved for calculating the distance on the Rie-
mannian manifold. We instead vectorize the symmetric matrix and
measure the distance in the Euclidean space, which is much faster.

Weighted Fisher discriminant analysis as weak learners. It is
well known that the weak classifier plays an important roll for an en-
semble learning algorithm such as Boosting and Bagging [17]. De-
cision stump is the one of the simplest classifiers. It selects the most
discriminative dimension and discard all the other dimensions’ in-
formation. In other words, it projects the original multidimensional
data onto one of its axis. This treatment may drop a lot useful infor-
mation for classification. Levi and Weiss [10] have adopted multidi-
mensional stumps to train a boosted detector. In [18], linear SVMs
are used as weak classifiers. The drawback is its heavy training com-
plexity. We instead adopt FDA as weak learners. FDA projects the
training data onto the direction which most separates the two classes
by maximizing the Fisher score. In this way more information is
exploited than multidimensional decision stump. Moreover, it has
close-form solution, therefore it is much more faster in training than
SVMs. After projection, the offset of the linear classifier is obtained
by exhausted search as in [1].

To show the better classification capability, we have trained a
boosted classifier on an artificial 2D dataset with the multidimen-
sional decision stump and FDA as weak classifiers respectively.
Figure 2 shows the results. AdaBoost with the multidimensional
stump’s training error is still around 0.1 after 1000 rounds training.
In contrast, The training error of AdaBoost with FDA drops to zero
after 230 rounds. More importantly, the testing error of AdaBoost
with FDA is much lower than using multidimensional stumps. After
300 rounds’ training, the testing error of multidimensional stumps
increases slightly, which is an indicator of overfitting.

3. EXPERIMENTS

The experimental section is organized as follows. First, the dataset
used in this experiment, including how the performance is analyzed,
are described. Experiments and the parameters used to achieve op-
timal results are then discussed. Finally, experimental results and
analysis of different techniques are compared.

MIT + CMU frontal face test set. We tested our face detectors
on the low resolution faces dataset, MIT + CMU frontal face test
set. The complete set contains 130 images with 507 frontal faces.
Detections are considered true or false positives based on the area of
overlap with ground truth bounding boxes. To be considered a cor-
rect detection, the area of overlap between the predicted bounding
box and ground truth bounding box must exceed 50%. Multiple de-
tections of the same face in an image are considered false detections.

ICovariance matrices are symmetric and positive semi-definite, hence
they reside in the Riemannian manifold.
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Fig. 3: ROC curves for our algorithm on the MIT + CMU test set [7]. The detector was run using a step size of 1 pixel and a scale factor of 1.2.

Experiment parameters. Our training sets contain 250, 500,
750 and 2, 500 frontal human faces obtained from the internet. The
faces are scaled and aligned to a base resolution of 24 x 24 pix-
els. We used approximately 8, 500 non-face training images to boot-
strap the negative samples. In this experiment, we use 7,000 co-
variance filters sampled uniformly from the entire set of rectangle
filters. Each filter consists of four parameters, namely, z-coordinate,
y-coordinate, width and height. A strong weak classifier consist-
ing of several weak classifiers is built in each stage of the cascade.
In each stage, weak classifiers are added until the learning goal is
met. In this experiment, we set the minimum detection rate in each
stage to be 99.5% and the maximum false positive rate to be 50%.
The non-face samples used in each stage of the cascade are collected
from false positives of the previous stages of the cascade (bootstrap-
ping). The cascade training algorithm terminates when there are not
enough negative samples to bootstrap. In this experiment, we set the
scaling factor to 1.2 and window shifting step to 1. The technique
used for merging overlapping windows is similar to [1]. For train-
ing and testing Haar-like wavelet features, we use the fast AdaBoost
implementation proposed by Wu et al. [3].

Results. Figure 3 shows a comparison between the ROC curves
produced by our covariance features and the ROC curves from Haar-
like wavelet features [1], which serves as a baseline. We construct
the ROC curve by repeatedly adding one node to the cascades at a
time. The curve between two consecutive points is approximated by
a line segment. The ROC curves show that covariance features sig-
nificantly outperform Haar-like wavelet features when the training
database size is small (e.g., less than 500 faces). However, when
the database size is large, the performance of both features are very
similar. These results indicate that the type of features plays a cru-
cial role in face detection performance, especially when the number
of training samples is small. As the number of samples grows, the
performance difference between the two techniques decreases.

We believe that Haar features are not discriminant enough to
separate the two classes (face and non-face). As a result, it does not
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Fig. 4: The accumulated rejection rate over the first 6 cascade levels using
the covariance feature.

generalize well when the database size is small. Covariance features,
on the other hand, are much more discriminant and extremely pow-
erful in separating a patch of faces from non-faces. Figure 4 shows
the AdaBoost with FDA’s accumulated rejection rate over different
cascade levels. It can be seen that the first 3 levels of cascade can
reject more than 90% of the non-face samples already. Also it can
be observed that for different sizes of training data, the accumulated
rejection rate over the first 6 cascade levels is very similar. Based
on this observation, we may design more efficient and accurate de-
tectors using multi-layer boosting with heterogeneous features. We
leave this topic for future research.

Based upon our observations, using small training size does not
only ease a process of face labeling, which is a rather tedious and
time-consuming process, but also results in a smaller and simpler
classifier (Figure 6). The classifier trained using 250 faces contains
only 201 covariance features in total while the classifier trained using
2500 faces contains three times as many weak classifiers as the one
with 250 faces. Training with small datasets reduces the training
time. Hence the second advantage is that the resulted simpler final
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Fig. 5: Some detection results of our face detectors trained using only 250 faces on MIT + CMU test images. Note that there are very few false positives and

negatives.

classifier reduces the detection time. Also simpler classifiers are less
likely to be overfit.

Our findings in this work are consistent with the experimental re-
sults in [10], which used the HOG feature and the multidimensional
decision stump as weak classifiers.

In Figure 5, we show some detection results of our face detectors
trained using 250 faces on MIT + CMU frontal face test sets. Note
that there are very few false positives and negatives on a detector
trained with such few training examples.
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Fig. 6: The number of weak classifiers in different cascade levels.

4. CONCLUSION

In this work, we have proposed a new approach for face detection.
Current object detectors heavily depend on large scale training data
to model the variations of the target object. Detectors that rely on
small labeled training data are thus needed. We show in this work
that discriminative features are critically important for the success of
such detecting systems. In particular we have shown that covariance
features plus boosted FDA significantly improve the capability of the
detector to learn from a small number of labeled examples.

In the future we will research on designing more efficient and
accurate detection systems using heterogeneous features, based upon
the findings from this work.
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